3 research outputs found

    An Efficient Design Methodology for Complex Sequential Asynchronous Digital Circuits

    Get PDF
    Asynchronous digital logic as a design alternative offers a smaller circuit area and lower power consumption but suffers from increased complexity and difficulties related to logic hazards and elements synchronization. The presented work proposes a design methodology based on the speed-independent sequential logic theory, oriented toward asynchronous hardware implementation of complex multi-step algorithms. Targeting controller-centric devices that perform data-driven non-linear execution, the methodology offers a CSP language-based controller workflow description approach and the specification of a project implementation template supported by a two-stage design process. First, the CSP layer describes complex speed-independent controller behavior offering better scalability and maintainability than the STG model. Second, the component-oriented design template specifies functional elements\u27 structural organization and emphasizes the divide-and-conquer philosophy, streamlining large and complex devices\u27 design and maintenance. Finally, the implementation process is divided into two stages: a rapid development and functional verification stage and a synthesizable codebase stage. Additionally, a case study design of a split-transaction MESI cache coherency controller and its analysis are presented to validate the proposed methodology. The testing phase compares synthesized and routed gate-level asynchronous and synchronous implementations. For models synthesized to work with the same speed, the asynchronous circuit area is 20% smaller with lower power consumption at approximately 18% of the synchronous reference. The synchronous version synthesized for performance is 3.5 times faster, at the cost of a large increase in area and power usage. The results prove the methodology\u27s ability to deliver working complex asynchronous circuits competitive in the chip area and power characteristics

    An Efficient Design Methodology for Complex Sequential Asynchronous Digital Circuits

    No full text
    Asynchronous digital logic as a design alternative offers a smaller circuit area and lower power consumption but suffers from increased complexity and difficulties related to logic hazards and elements synchronization. The presented work proposes a design methodology based on the speed-independent sequential logic theory, oriented toward asynchronous hardware implementation of complex multi-step algorithms. Targeting controller-centric devices that perform data-driven non-linear execution, the methodology offers a CSP language-based controller workflow description approach and the specification of a project implementation template supported by a two-stage design process. First, the CSP layer describes complex speed-independent controller behavior offering better scalability and maintainability than the STG model. Second, the component-oriented design template specifies functional elements' structural organization and emphasizes the divide-and-conquer philosophy, streamlining large and complex devices' design and maintenance. Finally, the implementation process is divided into two stages: a rapid development and functional verification stage and a synthesizable codebase stage. Additionally, a case study design of a split-transaction MESI cache coherency controller and its analysis are presented to validate the proposed methodology. The testing phase compares synthesized and routed gate-level asynchronous and synchronous implementations. For models synthesized to work with the same speed, the asynchronous circuit area is 20% smaller with lower power consumption at approximately 18% of the synchronous reference. The synchronous version synthesized for performance is 3.5 times faster, at the cost of a large increase in area and power usage. The results prove the methodology's ability to deliver working complex asynchronous circuits competitive in the chip area and power characteristics

    Associations of Dietary Patterns and Metabolic-Hormone Profiles with Breast Cancer Risk: A Case-Control Study

    No full text
    Breast cancer is the most diagnosed cancer in women worldwide. Studies regarding complex breast cancer aetiology are limited and the results are inconclusive. We investigated the associations between dietary patterns (DPs), metabolic-hormone profiles (M-HPs), and breast cancer risk. This case-control study involved 420 women aged 40⁻79 years from north-eastern Poland, including 190 newly-diagnosed breast cancer cases. The serum concentration of lipid components, glucose, and hormones (oestradiol, progesterone, testosterone, prolactin, cortisol, insulin) was marked in 129 post-menopausal women (82 controls, 47 cases). The food frequency consumption was collected using a validated 62-item food frequency questionnaire. A posteriori DPs or M-HPs were derived with a Principal Component Analysis (PCA). Three DPs: ‘Non-Healthy’, ‘Prudent’, and ‘Margarine and Sweetened Dairy’ and two M-HPs: ‘Metabolic-Syndrome’ and ‘High-Hormone’ were identified. The ‘Polish-adapted Mediterranean Diet’ (‘Polish-aMED’) score was calculated. The risk of breast cancer risk was three-times higher (odds ratio (OR): 2.90; 95% confidence interval (95% Cl): 1.62⁻5.21; p < 0.001) in the upper tertile of the ‘Non-Healthy’ pattern (reference: bottom tertile) and five-times higher (OR: 5.34; 95% Cl: 1.84⁻15.48; p < 0.01) in the upper tertile of the ‘High-Hormone’ profile (reference: bottom tertile). There was a positive association of ‘Metabolic-Syndrome’ profile and an inverse association of ‘Polish-aMED’ score with the risk of breast cancer, which disappeared after adjustment for confounders. No significant association between ‘Prudent’ or ‘Margarine and Sweetened Dairy’ DPs and cancer risk was revealed. Concluding, a pro-healthy diet is insufficient to reduce the risk of breast cancer in peri- and postmenopausal women. The findings highlight the harmful effect of the ‘High-Hormone’ profile and the ‘Non-Healthy’ dietary pattern on breast cancer risk. In breast cancer prevention, special attention should be paid to decreasing the adherence to the ‘Non-Healthy’ pattern by reducing the consumption of highly processed food and foods with a high content of sugar and animal fat. There is also a need to monitor the concentration of multiple sex hormones in the context of breast cancer risk
    corecore